
Public

SMART CONTRACT AUDIT REPORT

for

Feeder Lending

Prepared By: Yiqun Chen

Hangzhou, China
December 31, 2021

1/30 PeckShield Audit Report #: 2021-435

contact@peckshield.com

Public

Document Properties

Client Feeder Finance
Title Smart Contract Audit Report
Target Feeder Lending
Version 1.0
Author Shulin Bie
Auditors Shulin Bie, Xuxian Jiang
Reviewed by Yiqun Chen
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 December 31, 2021 Shulin Bie Final Release
1.0-rc December 31, 2021 Shulin Bie Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Yiqun Chen
Phone +86 183 5897 7782
Email contact@peckshield.com

2/30 PeckShield Audit Report #: 2021-435

Public

Contents

1 Introduction 4
1.1 About Feeder Lending . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 6

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Improper Logic Of viewBidsPerOffer() . 11
3.2 Incompatibility With Deflationary/Rebasing Tokens 12
3.3 Accommodation of Non-ERC20-Compliant Tokens 14
3.4 Duplicate Vault Detection and Prevention . 17
3.5 Trust Issue Of Admin Keys . 18
3.6 Improper Logic Of VaultKeeperFeed::deposit() . 19
3.7 Potential Repeated acceptBid() For The Same Offer 21
3.8 Improper Logic Of liquidateOnBehalf() . 23
3.9 Potential Sandwich/MEV Attack In liquidate() . 25

4 Conclusion 28

References 29

3/30 PeckShield Audit Report #: 2021-435

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of
the Feeder Lending, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About Feeder Lending

Feeder Finance is a DeFi aggregator for diversified yield generation on Binance Smart Chain (BSC).
The protocol aims to allow investors to feed capital into lending protocols, liquidity pools, vaults,
and other DeFi products in an automated and diversified way. Feeder Lending, as an important part
of Feeder Finance, is a permission-less decentralized protocol that provides lending and borrowing
services through innovatively introducing an auction mechanism. It is an important component in
the Feeder Finance ecosystem.

Table 1.1: Basic Information of Feeder Lending

Item Description
Target Feeder Lending

Website https://feeder.finance/
Type Solidity Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report December 31, 2021

4/30 PeckShield Audit Report #: 2021-435

Public

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/FeederFinance/lending-contracts.git (06ee0c2)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/FeederFinance/lending-contracts.git (d799469)

1.2 About PeckShield

PeckShield Inc. [11] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [10]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

5/30 PeckShield Audit Report #: 2021-435

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

6/30 PeckShield Audit Report #: 2021-435

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/30 PeckShield Audit Report #: 2021-435

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/30 PeckShield Audit Report #: 2021-435

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Feeder Lending implementation. During the
first phase of our audit, we study the smart contract source code and run our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 2

Medium 4

Low 3

Informational 0

Total 9

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/30 PeckShield Audit Report #: 2021-435

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 2 high-severity vulnerabil-
ities, 4 medium-severity vulnerabilities, and 3 low-severity vulnerabilities.

Table 2.1: Key Feeder Lending Audit Findings

ID Severity Title Category Status
PVE-001 Medium Improper Logic Of viewBidsPerOffer() Business Logic Fixed
PVE-002 Low Incompatibility With Deflationary/Re-

basing Tokens
Business Logic Mitigated

PVE-003 Low Accommodation Of Non-ERC20-
Compliant Tokens

Coding Practices Fixed

PVE-004 Low Duplicate Vault Detection and Preven-
tion

Business Logic Fixed

PVE-005 Medium Trust Issue Of Admin Keys Security Features Confirmed
PVE-006 High Improper Logic Of VaultKeeper-

Feed::deposit()
Business Logic Fixed

PVE-007 High Potential Repeated acceptBid() For The
Same Offer

Business Logic Fixed

PVE-008 Medium Improper Logic Of liquidateOnBehalf() Business Logic Fixed
PVE-009 Medium Potential Sandwich/MEV Attack In liq-

uidate()
Time and State Confirmed

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/30 PeckShield Audit Report #: 2021-435

Public

3 | Detailed Results

3.1 Improper Logic Of viewBidsPerOffer()

• ID: PVE-001

• Severity: Medium

• Likelihood: High

• Impact: Low

• Target: DealManager/FeedLoan

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

By design, Feeder Lending protocol implements an auction mechanism to provide lending, borrowing
and liquidating services. When the borrower intends to use his assets as collateral to borrow other
assets, he should create an offer for his assets. Others can bid for the offer by providing the type
of the loanable asset, amount, interest rate, time duration, etc. Once the borrower accepts one of
the bids, he will receive the bid related assets. If the borrower cannot repay the borrowed assets
on time, his collateral will be liquidated. Feeder Lending protocol also provides a series of query
routines for the user. In particular, one routine, i.e., DealManager::viewBidsPerOffer(), is designed to
query the bids’ information of an offer. While examining its logic, we notice there is an improper
implementation that needs to be improved.

To elaborate, we show below the related code snippet of the DealManager contract. The DealManager
::viewBidsPerOffer() routine has three input parameters: the first _offerId parameter specifies the
queried offer identification, the second _cursor parameter specifies the start index of the offerBids

[_offerId] array, and the third _size parameter indicates the number of the offerBids[_offerId]

array element starting from _cursor. However, we notice the returned _values copies from 0 of the
offerBids[_offerId] array rather than _cursor (line 510). Given this, we suggest to improve the
implementation as below: _values[i] = offerBids[_offerId][_cursor + i] (line 510).

497 function viewBidsPerOffer(
498 uint256 _offerId ,
499 uint256 _cursor ,

11/30 PeckShield Audit Report #: 2021-435

Public

500 uint256 _size
501) external view returns (OfferBidInfo [] memory , uint256) {
502 uint256 _length = _size;
503 uint256 _bidsLength = offerBids[_offerId]. length;
504 if (_length > _bidsLength - _cursor) {
505 _length = _bidsLength - _cursor;
506 }
507
508 OfferBidInfo [] memory _values = new OfferBidInfo [](_length);
509 for (uint256 i = 0; i < _length; i++) {
510 _values[i] = offerBids[_offerId][i];
511 }
512
513 return (_values , _cursor + _length);
514 }

Listing 3.1: DealManager::viewBidsPerOffer()

Note other routines, i.e., DealManager::viewBidsPerBidder(), DealManager::viewOffers(), DealManager
::viewOffersByCollateral(), FeedLoan::viewLoans(), FeedLoan::viewLoansPerLender(), and FeedLoan::

viewLoansPerBorrower(), share the same issue.

Recommendation Correct the implementation of above-mentioned routines.

Status The issue has been addressed by the following commit: 83b672f.

3.2 Incompatibility With Deflationary/Rebasing Tokens

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

As section 3.1 mentioned, Feeder Lending protocol implements an auction mechanism to provide
lending, borrowing and liquidating services. By design, the borrower’s collateral assets and the
lender’s assets will be transferred between the internal contracts of the protocol. This is reasonable
under the assumption that these transfers will always result in full transfer.

198 function createOffer(
199 address _collateral ,
200 uint256 _collateralAmount ,
201 bool _useVault ,
202 uint256 _vaultId
203) external nonReentrant {

12/30 PeckShield Audit Report #: 2021-435

https://github.com/FeederFinance/lending-contracts/commit/83b672f5d5ded7855ca0f184388753437fcf1cd0

Public

204 ...

206 // Transfer collateral to contract
207 IERC20(_collateral).safeTransferFrom(address(msg.sender), address(this),

_collateralAmount);

209 // Emit OfferCreated event
210 emit OfferCreated(_offerId , address(msg.sender), _collateral , _collateralAmount ,

_useVault , _vaultId);
211 }

Listing 3.2: DealManager::createOffer()

243 function startLoan(
244 address _lender ,
245 address _asset ,
246 uint256 _assetAmount ,
247 address _borrower ,
248 address _collateral ,
249 uint256 _collateralAmount ,
250 uint256 _duration ,
251 uint256 _intRateBP ,
252 bool _intProRated ,
253 bool _useVault ,
254 uint256 _vaultId
255) external onlyDealManager returns (uint256) {
256 // Transfer collateral from DealManager to this contract
257 IERC20(_collateral).safeTransferFrom(msg.sender , address(this),

_collateralAmount);

259 // Transfer lending asset to borrower
260 IERC20(_asset).safeTransferFrom(msg.sender , _borrower , _assetAmount);

262 ...
263 }

Listing 3.3: FeedLoan::startLoan()

However, there exist other ERC20 tokens that may make certain customizations to their ERC20
contracts. One type of these tokens is deflationary tokens that charge certain fee for every transfer()

or transferFrom(). (Another type is rebasing tokens such as YAM.) As a result, this may not meet the
assumption behind these routines related to token transfer.

One possible mitigation is to measure the asset change right before and after the asset-transferring
routines. In other words, instead of bluntly assuming the amount parameter in transfer() or
transferFrom() will always result in full transfer, we need to ensure the increased or decreased amount
in the contract before and after the transfer() or transferFrom() is expected and aligned well with our
operation. Though these additional checks cost additional gas usage, we consider they are necessary
to deal with deflationary tokens or other customized ones if their support is deemed necessary.

13/30 PeckShield Audit Report #: 2021-435

Public

Another mitigation is to regulate the set of ERC20 tokens that are permitted into Feeder Lending.
In Feeder Lending, it is indeed possible to effectively regulate the set of tokens that can be supported.
Keep in mind that there exist certain assets (e.g., USDT) that may have control switches that can be
dynamically exercised to suddenly become one.

Recommendation If current codebase needs to support possible deflationary tokens, it is better
to check the balance before and after the transfer()/transferFrom() call to ensure the book-keeping
amount is accurate. This support may bring additional gas cost. Also, keep in mind that certain
tokens may not be deflationary for the time being. However, they could have a control switch that
can be exercised to turn them into deflationary tokens. One example is the widely-adopted USDT.

Status The issue has been mitigated by the following commit: 20d80a6.

3.3 Accommodation of Non-ERC20-Compliant Tokens

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the approve() routine and analyze possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related
code snippet below. On its entry of approve(), there is a requirement, i.e., require(!((_value != 0)

&& (allowed[msg.sender][_spender] != 0))). This specific requirement essentially indicates the need
of reducing the allowance to 0 first (by calling approve(_spender, 0)) if it is not, and then calling a
second one to set the proper allowance. This requirement is in place to mitigate the known approve()/

transferFrom() race condition (https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729).

194 /**
195 * @dev Approve the passed address to spend the specified amount of tokens on behalf

of msg.sender.
196 * @param _spender The address which will spend the funds.
197 * @param _value The amount of tokens to be spent.
198 */
199 f unc t i on approve (address _spender , u in t _value) pub l i c on l yPay l o adS i z e (2 ∗ 32) {

201 // To change the approve amount you first have to reduce the addresses ‘

14/30 PeckShield Audit Report #: 2021-435

https://github.com/FeederFinance/lending-contracts/commit/20d80a662f0b366e799dcbb3c1afb5872c409a16

Public

202 // allowance to zero by calling ‘approve(_spender , 0)‘ if it is not
203 // already 0 to mitigate the race condition described here:
204 // https :// github.com/ethereum/EIPs/issues /20# issuecomment -263524729
205 r equ i r e (! ((_value != 0) && (a l l owed [msg . sender] [_spender] != 0))) ;

207 a l l owed [msg . sender] [_spender] = _value ;
208 Approva l (msg . sender , _spender , _value) ;
209 }

Listing 3.4: USDT Token Contract

Because of that, a normal call to approve() with a currently non-zero allowance may fail. In the
following, we use the DealManager::acceptBid() routine as an example. In this routine, approve() is
executed to assign approval to the FeedLoan contract. To accommodate the specific idiosyncrasy,
there is a need to approve() twice: the first one reduces the allowance to 0; and the second one sets
the new allowance.

375 function acceptBid(uint256 _offerId , uint256 _bidId) external nonReentrant {
376 ...

378 // Transfer asset and collateral to loan manager and open a loan and mint nft
379 IERC20(_offer.collateral).approve(address(feedLoan), _offer.collateralAmount);
380 IERC20(_bid.asset).approve(address(feedLoan), _bid.amount);
381 uint256 _loanId = IFeedLoan(feedLoan).startLoan(
382 _bid.account ,
383 _bid.asset ,
384 _bid.amount ,
385 _offer.maker ,
386 _offer.collateral ,
387 _offer.collateralAmount ,
388 _bid.duration ,
389 _bid.intRateBP ,
390 _bid.intProRated ,
391 _offer.useVault ,
392 _offer.vaultId
393);

395 // Set loan’s ID to offer info
396 _offer.loanId = _loanId;

398 // Set accepted bid’s ID to offer info
399 _offer.bidId = _bid.id;

401 if (_bid.allowLiquidator) IFeedLoan(feedLoan).setAllowLiquidator(_loanId , _bid.
allowLiquidator);

403 // Emit OfferBidAccepted event
404 emit OfferBidAccepted(_offerId , _bidId);
405 }

Listing 3.5: DealManager::acceptBid()

15/30 PeckShield Audit Report #: 2021-435

Public

Moreover, it is important to note that for certain non-compliant ERC20 tokens (e.g., USDT),
the transfer() function does not have a return value. However, the IERC20 interface has defined the
transfer() interface with a bool return value. As a result, the call to transfer() may expect a return
value. With the lack of return value of USDT’s transfer(), the call will be unfortunately reverted.

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return false
without reverts. Moreover, the safe version also supports tokens that return no value (and instead
revert or throw on failure). Note that non-reverting calls are assumed to be successful. Similarly,
there is a safe version of approve()/transferFrom() as well, i.e., safeApprove()/safeTransferFrom().

In the following, we show the FeedLoan::payback() routine. If the USDT token is supported as
_loan.collateral, the unsafe version of IERC20(_loan.collateral).transfer(loanBorrower[_loanId],

_withdrawnAmount) may revert as there is no return value in the USDT token contract’s transfer()

implementation (but the IERC20 interface expects a return value). We may intend to replace transfer

() with safeTransfer().

345 function payback(uint256 _loanId) external nonReentrant {
346 ...

348 // If collateral is in vault
349 if (loanVault[_loanId]. useVault) {
350 uint256 _withdrawnAmount = _withdrawFromVault(_loanId);
351 // Transfer collateral to borrower
352 IERC20(_loan.collateral).transfer(loanBorrower[_loanId], _withdrawnAmount);
353 } else {
354 // Transfer collateral to borrower
355 IERC20(_loan.collateral).transfer(loanBorrower[_loanId], _loan.

collateralAmount);
356 }

358 // Emit LoanRepaid event
359 emit LoanRepaid(_loanId , _repaymentAmount , _loan.earnedInterest);
360 }

Listing 3.6: FeedLoan::payback()

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve()/transfer()/transferFrom().

Status The issue has been addressed by the following commit: 98586b1.

16/30 PeckShield Audit Report #: 2021-435

https://github.com/FeederFinance/lending-contracts/commit/98586b1ff31ec4010aa1d08471cb970b4d11ebf1

Public

3.4 Duplicate Vault Detection and Prevention

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: VaultController

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

In the Feeder Lending protocol, the VaultController contract plays a vault proxy role, which maintains
the relationship of the staking token and vault address. In current implementation, there are a number
of concurrent vaults and more can be scheduled for addition (via a proper governance procedure or
moderated by a privileged account). To accommodate these new vaults, the design has the necessary
mechanism in place that allows for dynamic additions of new vaults.

The addition of a new vault is implemented in add(), whose code logic is shown below. It turns
out it did not perform necessary sanity checks to avoid duplicate vault addition. Though it is a
privileged interface (protected with the modifier onlyOwner), it is still desirable to enforce it at the
smart contract code level, eliminating the concern of wrong vault introduction from human omissions.

168 function add(IERC20 _token , address _vault) public onlyOwner nonReentrant {
169 // Store new vault info in storage
170 vaultInfo.push(VaultInfo ({token: _token , vault: _vault }));
171
172 // Store vault address mapping to vid
173 adddressToVid[_vault] = vaultInfo.length - 1;
174
175 // Emit VaultAdded event
176 emit VaultAdded(adddressToVid[_vault], address(_token), _vault);
177 }

Listing 3.7: VaultController::add()

Recommendation Add necessary sanity checks to avoid duplicate vault addition.

Status The issue has been addressed by the following commit: 219b006.

17/30 PeckShield Audit Report #: 2021-435

https://github.com/FeederFinance/lending-contracts/commit/219b0062866e599acf4e863e4fa642570a83d92d

Public

3.5 Trust Issue Of Admin Keys

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [5]

• CWE subcategory: CWE-287 [2]

Description

In the Feeder Lending contract, there is a privileged account that plays a critical role in governing
and regulating the protocol-wide operations (e.g., configuring various system parameters). In the
following, we show the representative functions potentially affected by the privilege of the account.

721 function setLenderFeeBP(uint256 _lenderFeeBP) external onlyOwner nonReentrant {
722 require(_lenderFeeBP >= 0, "SetLenderFeeBP: must greater than or equal to zero")

;
723
724 lenderFeeBP = _lenderFeeBP;
725
726 emit LenderFeeBPChanged(lenderFeeBP);
727 }
728
729 function setBorrowerFeeBP(uint256 _borrowerFeeBP) external onlyOwner nonReentrant {
730 require(_borrowerFeeBP >= 0, "SetBorrowerFeeBP: must greater than or equal to

zero");
731
732 borrowerFeeBP = _borrowerFeeBP;
733
734 emit BorrowerFeeBPChanged(borrowerFeeBP);
735 }
736
737 function setLenderFeeCollector(address _lenderFeeCollector) external onlyOwner

nonReentrant {
738 require(_lenderFeeCollector != address (0), "SetLenderFeeCollector: Cannot be

zero address");
739
740 lenderFeeCollector = _lenderFeeCollector;
741
742 emit LenderFeeCollectorChanged(lenderFeeCollector);
743 }
744
745 function setBorrowerFeeCollector(address _borrowerFeeCollector) external onlyOwner

nonReentrant {
746 require(_borrowerFeeCollector != address (0), "SetBorrowerFeeCollector: Cannot be

zero address");
747
748 borrowerFeeCollector = _borrowerFeeCollector;
749

18/30 PeckShield Audit Report #: 2021-435

Public

750 emit BorrowerFeeCollectorChanged(borrowerFeeCollector);
751 }

Listing 3.8: FeedLoan

We emphasize that the privilege assignment may be necessary and consistent with the protocol
design. However, it is worrisome if the privileged account is not governed by a DAO-like structure.
Note that a compromised account would allow the attacker to modify a number of sensitive system
parameters, which directly undermines the assumption of the Feeder Lending design.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status The issue has been confirmed by the team.

3.6 Improper Logic Of VaultKeeperFeed::deposit()

• ID: PVE-006

• Severity: High

• Likelihood: High

• Impact: Medium

• Target: VaultKeeperFeed

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

By design, the VaultKeeperFeed contract is the main entry for interaction with the FeedVault contract.
In particular, one entry routine, i.e., deposit(), accepts the deposits of the supported token assets
and then deposits the assets to FeedVault (specified by the vaultAddress). While examining its logic,
we notice the share calculation is incorrect.

To elaborate, we show below the related code snippet of the VaultKeeperFeed contract. In the
deposit() function, the following statement is executed to calculate the share for the deposit: _shares

= (_amount.mul(totalShares)).div(_before) (line 90). We notice totalShares represents the total
shares held by all the depositors of the VaultKeeperFeed contract, which is corresponding to the total
balance of the token deposited to the VaultKeeperFeed contract. However, _before stores the total
balance of the token deposited to the vaultAddress rather than the VaultKeeperFeed contract(line 70),
which directly undermines the deposit() design.

68 function deposit(uint256 _amount) external nonReentrant {
69 // Balance before deposit
70 uint256 _before = balance ();

19/30 PeckShield Audit Report #: 2021-435

Public

71
72 // Transfer token from sender
73 token.safeTransferFrom(msg.sender , address(this), _amount);
74
75 // Deposit token to target vault
76 token.approve(vaultAddress , _amount);
77 IFeedVault(vaultAddress).deposit(_amount);
78
79 // Balance after deposited
80 uint256 _after = balance ();
81
82 // Additional check for deflationary tokens
83 _amount = _after.sub(_before);
84
85 // Calculate shares to be added
86 uint256 _shares = 0;
87 if (totalShares == 0) {
88 _shares = _amount;
89 } else {
90 _shares = (_amount.mul(totalShares)).div(_before);
91 }
92
93 // Get user info from storage
94 UserInfo storage user = userInfo[address(msg.sender)];
95
96 // Add shares to total shares
97 totalShares = totalShares.add(_shares);
98
99 // Add shares to user info

100 user.shares = user.shares.add(_shares);
101
102 // Emit Deposited event
103 emit Deposited(_amount);
104 }

Listing 3.9: VaultKeeperFeed::deposit()

Recommendation Correct the implementation of the deposit() routine as above-mentioned.

Status The issue has been addressed by the following commit: a8fba4d.

20/30 PeckShield Audit Report #: 2021-435

https://github.com/FeederFinance/lending-contracts/commit/a8fba4dbc2da7ddc54ead3ff04d9504a75d1a152

Public

3.7 Potential Repeated acceptBid() For The Same Offer

• ID: PVE-007

• Severity: High

• Likelihood: High

• Impact: High

• Target: DealManager

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

As mentioned in Section 3.1, when the borrower intends to use his assets as collateral to borrow other
assets, he should create an offer for his assets with the call to createOffer(), while others can bid
for the offer with the call to offerBid() by providing the type of the loanable asset, amount, interest
rate, time duration, etc. After that, the acceptBid() is called by the borrower to accept one of the
bids that he is interested in. By doing so, he can borrow the bid related assets. While examining its
logic, we notice there is an improper implementation that needs to be improved.

To elaborate, we show below the related code snippet of the DealManager contract. In the
acceptBid() function, this requirement of require(_offer.maker == address(msg.sender), "AcceptBid:

account not maker") (line 408) is executed to ensure only the owner of the offer (specified by the
input _offerId parameter) can accept the bid, and the next requirement of require(_bid.status

== OfferBidStatus.Open, "AcceptBid: bid is already canceled") (line 409) is executed to ensure the
validity of the bid (specified by the input _bidId parameter). However, we notice it doesn’t check
whether the offer has accepted a bid before, which may be exploited by a malicious actor to accept
other bids for the same offer again and again. Given this, we suggest to add necessary sanity check
at the beginning of the acceptBid() function to prevent this case as follows: require(_offer.status

== OfferStatus.Pending).

400 function acceptBid(
401 uint256 _offerId ,
402 uint256 _bidId ,
403 uint256 _safeDuration
404) external nonReentrant {
405 require(_offerId < totalOffersCount , "AcceptBid: offer not found");
406 Offer storage _offer = offers[_offerId];
407 OfferBidInfo storage _bid = offerBids[_offer.id][_bidId];
408 require(_offer.maker == address(msg.sender), "AcceptBid: account not maker");
409 require(_bid.status == OfferBidStatus.Open , "AcceptBid: bid is already canceled"

);
410 require(block.timestamp > _bid.updatedAt + _safeDuration , "AcceptBid: bid is

recently updated");
411
412 // Set offer status to closed
413 _offer.status = OfferStatus.Closed;

21/30 PeckShield Audit Report #: 2021-435

Public

414
415 // Set offer taker to lender address
416 _offer.taker = _bid.account;
417
418 // Set bid status to Accepted
419 _bid.status = OfferBidStatus.Accepted;
420
421 // Reduce total active offers counter
422 totalActiveOffers -= 1;
423
424 // Reduce offer bids count
425 offerActiveBidsCount[_offerId] -= 1;
426
427 // Reduce bidder bids count
428 bidderActiveBidsCount[_offerId][_bid.account] -= 1;
429
430 // Transfer asset and collateral to loan manager and open a loan and mint nft
431 IERC20(_offer.collateral).safeApprove(address(feedLoan), 0);
432 IERC20(_offer.collateral).safeApprove(address(feedLoan), _offer.collateralAmount

);
433 IERC20(_bid.asset).safeApprove(address(feedLoan), 0);
434 IERC20(_bid.asset).safeApprove(address(feedLoan), _bid.amount);
435 uint256 _loanId = IFeedLoan(feedLoan).startLoan(
436 _bid.account ,
437 _bid.asset ,
438 _bid.amount ,
439 _offer.maker ,
440 _offer.collateral ,
441 _offer.collateralAmount ,
442 _bid.duration ,
443 _bid.intRateBP ,
444 _bid.intProRated ,
445 _offer.useVault ,
446 _offer.vaultId
447);
448
449 ...
450 }

Listing 3.10: DealManager::acceptBid()

Recommendation Add the above-mentioned sanity check inside the acceptBid() routine.

Status The issue has been addressed by the following commit: 7b290fa.

22/30 PeckShield Audit Report #: 2021-435

https://github.com/FeederFinance/lending-contracts/commit/7b290fa7bef8dc7b59f79a442edbabdd7d536e3d

Public

3.8 Improper Logic Of liquidateOnBehalf()

• ID: PVE-008

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: FeedLoan

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

As mentioned in Section 3.1, if a borrower has not capability to repay his borrowed assets on time, his
collateral assets will be liquidated by others. In particular, one entry routine, i.e., liquidateOnBehalf
(), allows others to liquidate the borrower’s collateral assets on behalf of the lender. While examining
its logic, we notice there is an improper implementation that needs to be improved.

To elaborate, we show below the related code snippet of the FeedLoan contract. By design, during
liquidating the borrower’s collateral assets, the part of the repaid assets (specified by the _lenderFee

and _borrowerFee variables) will be respectively transferred to lenderFeeCollector (line 510) and
borrowerFeeCollector (line 513) as transaction fee. However, we notice _lenderFee is incorrectly
transferred to borrowerFeeCollector, which directly undermines the original intention of design. Given
this, we suggest to correct the implementation as below: IERC20(_loan.asset).safeTransferFrom(

address(msg.sender), address(borrowerFeeCollector), borrowerFeeCollector) (line 513).

465 function liquidateOnBehalf(uint256 _loanId) external nonReentrant {
466 // Fetch loan from storage
467 Loan storage _loan = loans[_loanId];
468
469 // Check whether lender allow liquidator to liquidate loan
470 require(_loan.allowLiquidator , "FeedLoan(liquidateOnBehalf): Liquidator is not

allowed");
471
472 // Loan should not be repaid , liquidated or completed
473 require(_loan.status == LoanStatus.Active , "FeedLoan(liquidateOnBehalf): Loan is

not active");
474
475 // Current block time is greater than loan starting time plus duration
476 require(block.timestamp > _loan.startTime.add(_loan.duration), "FeedLoan(

liquidateOnBehalf): Loan is not overdue");
477
478 uint256 _interestDue = _loan.maxRepayment.sub(_loan.assetAmount);
479 if (_loan.intProRated) {
480 _interestDue = _calcInterestDue(
481 _loan.assetAmount ,
482 _loan.intRateBP ,
483 _loan.duration ,
484 block.timestamp.sub(_loan.startTime),

23/30 PeckShield Audit Report #: 2021-435

Public

485 _loan.intProRated
486);
487 }
488
489 uint256 _lenderFee = _interestDue.mul(lenderFeeBP).div (10000);
490 uint256 _borrowerFee = _interestDue.mul(borrowerFeeBP).div (10000);
491
492 // If fees controller is set , adjust lender and borrower fees accordingly
493 if (feesController != address (0)) {
494 // Calculate and set lender & borrower fee by using discount basis point

from FeesController
495 _lenderFee = _lenderFee.sub(_lenderFee.mul(IFeesController(feesController).

getDiscountBP(loanLender[_loanId])).div (10000));
496 _borrowerFee = _borrowerFee.sub(
497 _borrowerFee.mul(IFeesController(feesController).getDiscountBP(address(

msg.sender))).div (10000)
498);
499 }
500
501 uint256 _repaymentAmount = _loan.assetAmount.add(_interestDue).sub(_lenderFee.

add(_borrowerFee));
502
503 // Transfer principal including interest from liquidator to contract
504 uint256 _assetAmount = _safeDeflationaryTransfer(address(msg.sender), address(

this), _loan.asset , _repaymentAmount);
505
506 // Update loan asset amount in case token is deflationary
507 _loan.assetAmount = _assetAmount.sub(_interestDue.sub(_lenderFee.add(

_borrowerFee)));
508
509 // Transfer lender ’s fee
510 IERC20(_loan.asset).safeTransferFrom(address(msg.sender), address(

lenderFeeCollector), _lenderFee);
511
512 // Transfer borrower ’s fee
513 IERC20(_loan.asset).safeTransferFrom(address(msg.sender), address(

borrowerFeeCollector), _lenderFee);
514
515 ...
516 }

Listing 3.11: FeedLoan::liquidateOnBehalf()

Recommendation Correct the above implementation in liquidateOnBehalf().

Status The issue has been addressed by the following commit: 31bd742.

24/30 PeckShield Audit Report #: 2021-435

https://github.com/FeederFinance/lending-contracts/commit/31bd7420ed6dbeff896019d7c91187842ed0f8ba

Public

3.9 Potential Sandwich/MEV Attack In liquidate()

• ID: PVE-009

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: FeedLoan

• Category: Time and State [8]

• CWE subcategory: CWE-682 [3]

Description

As mentioned earlier, if a borrower has not capability to repay his borrowed assets on time, his
collateral assets will be liquidated by others. In particular, one entry routine, i.e., liquidate(), allows
the lender to liquidate the borrower’s collateral assets by himself. While examining its logic, we
observe there is a vulnerability that can be exploited by the lender to decrease transaction fee.

To elaborate, we show below the related code snippet of the FeedLoan contract. By design, the
_lenderFee can be discounted (line 580) according to the amount of the token (specified by the token

variable of the FeesController contract) held by the lender. If the amount of the token is larger than
50000000000000000 (line 66), the _lenderFee will be discounted to zero. By borrowing a huge of the
token through flashloan before the call to liquidate(), the lender can reduce the transaction fee
along with receiving more collateral assets than normal.

540 function liquidate(uint256 _loanId) external nonReentrant {
541 // Fetch loan from storage
542 Loan storage _loan = loans[_loanId];
543
544 // Loan should not be repaid , liquidated or completed
545 require(_loan.status == LoanStatus.Active , "FeedLoan(liquidate): Loan is not

active");
546
547 // Current block time is greater than loan starting time plus duration
548 require(block.timestamp > _loan.startTime.add(_loan.duration), "FeedLoan(

liquidate): Loan is not overdue");
549
550 // Get loan’s lender
551 address _lender = loanLender[_loanId];
552
553 // Only lender is allowed to liquidate the loan
554 require(_lender == msg.sender , "FeedLoan(liquidate): Sender is not lender");
555
556 // Burn NFT
557 _burn(_loanId);
558
559 // Set loan status
560 _loan.status = LoanStatus.Liquidated;
561
562 // Update total number of active loans

25/30 PeckShield Audit Report #: 2021-435

Public

563 totalActiveLoans -= 1;
564
565 uint256 _returnAmount = 0;
566 // If collateral is in vault
567 if (loanVault[_loanId]. useVault) {
568 // Collateral balance AFTER withdraw
569 _returnAmount = _withdrawFromVault(_loanId);
570 } else {
571 _returnAmount = _loan.collateralAmount;
572 }
573
574 uint256 _lenderFee = _returnAmount.mul(lenderFeeBP).div (10000);
575 uint256 _borrowerFee = _returnAmount.mul(borrowerFeeBP).div (10000);
576
577 // If fees controller is set , adjust lender and borrower fees accordingly
578 if (feesController != address (0)) {
579 // Calculate and set lender & borrower fee by using discount basis point

from FeesController
580 _lenderFee = _lenderFee.sub(_lenderFee.mul(IFeesController(feesController).

getDiscountBP(loanLender[_loanId])).div (10000));
581 _borrowerFee = _borrowerFee.sub(
582 _borrowerFee.mul(IFeesController(feesController).getDiscountBP(

loanBorrower[_loanId])).div (10000)
583);
584 }
585
586 // Transfer lender ’s fee
587 IERC20(_loan.collateral).safeTransfer(lenderFeeCollector , _lenderFee);
588
589 // Transfer borrower ’s fee
590 IERC20(_loan.collateral).safeTransfer(borrowerFeeCollector , _borrowerFee);
591
592 // Calculate amount of collateral to return to lender after fees
593 _returnAmount = _returnAmount.sub(_lenderFee).sub(_borrowerFee);
594
595 // Tranfer collateral to lender
596 IERC20(_loan.collateral).safeTransfer(_lender , _returnAmount);
597
598 // Emit LoanLiquidated event
599 emit LoanLiquidated(_loanId , _returnAmount);
600 }

Listing 3.12: FeedLoan::liquidate()

35 function getDiscountBP(address _user) external view returns (uint256) {
36 // Set default discount basis point to zero
37 uint256 _discountBP = 0;
38
39 // Get user balance of a token
40 uint256 _balance = IERC20(token).balanceOf(_user);
41
42 // Get total supply of a token
43 uint256 _totalSupply = IERC20(token).totalSupply ();

26/30 PeckShield Audit Report #: 2021-435

Public

44
45 // If balance or total supply is 0 return 0
46 if (_balance == 0 _totalSupply == 0) return _discountBP;
47
48 // Compute user shares based token holding balance over total supply
49 uint256 _shares = _balance.mul(1e18).div(_totalSupply);
50
51 if (_shares < 500000000000000) {
52 // Shares < 0.05%
53 _discountBP = 0;
54 } else if (_shares >= 500000000000000 && _shares < 1000000000000000) {
55 // Shares >= 0.05% and < 0.1%
56 _discountBP = 1500;
57 } else if (_shares >= 1000000000000000 && _shares < 10000000000000000) {
58 // Shares >= 0.1% and < 1%
59 _discountBP = 2500;
60 } else if (_shares >= 10000000000000000 && _shares < 30000000000000000) {
61 // Shares >= 0.1% and < 0.3%
62 _discountBP = 5000;
63 } else if (_shares >= 30000000000000000 && _shares < 50000000000000000) {
64 // Shares >= 0.05% and < 0.1%
65 _discountBP = 7500;
66 } else if (_shares >= 50000000000000000) {
67 // Shares >= 5%
68 _discountBP = 10000;
69 }
70
71 // Return discount basis point
72 return _discountBP;
73 }

Listing 3.13: FeedLoan::liquidateOnBehalf()

Note the liquidateOnBehalf() routine shares the same issue.

Recommendation Develop an effective mitigation to the above MEV attack. One possible
mitigation is to ensure the liquidator is a EOA account.

Status The issue has been confirmed by the team.

27/30 PeckShield Audit Report #: 2021-435

Public

4 | Conclusion

In this audit, we have analyzed the Feeder Lending design and implementation. Feeder Lending, as an
important part of Feeder Finance, is a permission-less decentralized protocol that provides lending and
borrowing services through innovatively introducing an auction mechanism. It enriches the Feeder

Finance ecosystem. The current code base is well organized and those identified issues are promptly
confirmed and fixed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

28/30 PeckShield Audit Report #: 2021-435

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-682: Incorrect Calculation. https://cwe.mitre.org/data/definitions/682.html.

[4] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE CATEGORY: Error Conditions, Return Values, Status Codes. https://cwe.mitre.

org/data/definitions/389.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

29/30 PeckShield Audit Report #: 2021-435

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html

Public

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[11] PeckShield. PeckShield Inc. https://www.peckshield.com.

30/30 PeckShield Audit Report #: 2021-435

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Feeder Lending
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improper Logic Of viewBidsPerOffer()
	Incompatibility With Deflationary/Rebasing Tokens
	Accommodation of Non-ERC20-Compliant Tokens
	Duplicate Vault Detection and Prevention
	Trust Issue Of Admin Keys
	Improper Logic Of VaultKeeperFeed::deposit()
	Potential Repeated acceptBid() For The Same Offer
	Improper Logic Of liquidateOnBehalf()
	Potential Sandwich/MEV Attack In liquidate()

	Conclusion
	References

