
Public

SMART CONTRACT AUDIT REPORT

for

Feeder Finance

Prepared By: Yiqun Chen

PeckShield
July 9, 2021

1/27 PeckShield Audit Report #: 2021-180

sxwang@peckshield.com

Public

Document Properties

Client Feeder Finance
Title Smart Contract Audit Report
Target FeedVaults
Version 1.0
Author Xuxian Jiang
Auditors Shulin Bie, Xuxian Jiang
Reviewed by Yiqun Chen
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 July 9, 2021 Xuxian Jiang Final Release
1.0-rc1 July 3, 2021 Xuxian Jiang Release Candidate #1
0.3 June 30, 2021 Xuxian Jiang Additional Findings #2
0.2 June 28, 2021 Xuxian Jiang Additional Findings #1
0.1 June 25, 2021 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Yiqun Chen
Phone +86 183 5897 7782
Email contact@peckshield.com

2/27 PeckShield Audit Report #: 2021-180

Public

Contents

1 Introduction 4
1.1 About Feeder Finance . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Revisited Share Calculation in FeedVault::deposit() 11
3.2 Possible Sandwich/MEV Attacks For Reduced Returns 13
3.3 Accommodation Of Possible Non-Compliant ERC20 Tokens 14
3.4 Proper Asset Rebalance For Disabled Target Vaults 16
3.5 Improper withdraw() in TargetVaultDopple . 17
3.6 Incorrect Fee Collection in TargetVaultPancake::_collectFees() 18
3.7 Trust Issue of Admin Keys . 19
3.8 Improved Emergency Withdrawal in TargetVaultBunny 21
3.9 Force Investment Risk in TargetVaultDopple . 22
3.10 Improper balanceOf() in TargetVaultDopple/TargetVaultACrypto 23

4 Conclusion 25

References 26

3/27 PeckShield Audit Report #: 2021-180

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of
the Feeder Finance, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About Feeder Finance

Feeder Finance is a DeFi aggregator for diversified yield generation on Binance Smart Chain (BSC).
The protocol aims to allow investors to feed capital into lending protocols, liquidity pools, vaults,
and other DeFi products in an automated and diversified way. Through a single deposit, investors
are able to spread investments across multiple platforms, ensuring capital are more secure from a
single incident, yields are optimized, and investment process simplified. As a result, the protocol will
help to lower the entry barrier for normal users to benefit from the protocol gains.

The basic information of the Feeder protocol is as follows:

Table 1.1: Basic Information of The Feeder Protocol

Item Description
Issuer Feeder Finance

Website https://feeder.finance/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report July 9, 2021

In the following, we show the Git repository of reviewed files and the commit hash value used in

4/27 PeckShield Audit Report #: 2021-180

Public

this audit.

• https://github.com/FeederFinance/vaults-contracts.git (9afacf3)

And here is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/FeederFinance/vaults-contracts.git (2c1cf56)

1.2 About PeckShield

PeckShield Inc. [12] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [11]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

5/27 PeckShield Audit Report #: 2021-180

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/27 PeckShield Audit Report #: 2021-180

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [10], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/27 PeckShield Audit Report #: 2021-180

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/27 PeckShield Audit Report #: 2021-180

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the FeedVaults implementation. During the first
phase of our audit, we study the smart contract source code and run our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 2

Medium 3

Low 4

Informational 0

Undetermined 1

Total 10

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/27 PeckShield Audit Report #: 2021-180

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 2 high-severity vulner-
abilities, 3 medium-severity vulnerabilities, 4 low-severity vulnerabilities, and and 1 undetermined
issue.

Table 2.1: Key FeedVaults Audit Findings

ID Severity Title Category Status
PVE-001 Undetermined Revisited Share Calculation in Feed-

Vault::deposit()
Business Logic Fixed

PVE-002 Low Possible Sandwich/MEV Attacks For
Reduced Returns

Time and State Fixed

PVE-003 Low Accommodation Of Possible Non-
Compliant ERC20 Tokens

Coding Practices Fixed

PVE-004 Medium Proper Asset Rebalance For Disabled
Target Vaults

Business Logic Fixed

PVE-005 Low Improper withdraw() in TargetVault-
Dopple

Coding Practices Fixed

PVE-006 Medium Incorrect Fee Collection in TargetVault-
Pancake::_collectFees()

Business Logic Fixed

PVE-007 Medium Trust Issue Of Admin Keys Security Features Mitigated
PVE-008 Low Improved Emergency Withdrawal in Tar-

getVaultBunny
Business Logic Fixed

PVE-009 High Force Investment Risk in TargetVault-
Dopple

Business Logic Fixed

PVE-010 High Improper balanceOf() in TargetVault-
Dopple/TargetVaultACrypto

Business Logic Fixed

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/27 PeckShield Audit Report #: 2021-180

Public

3 | Detailed Results

3.1 Revisited Share Calculation in FeedVault::deposit()

• ID: PVE-001

• Severity: Undetermined

• Likelihood: N/A

• Impact: N/A

• Target: FeedVault

• Category: Business Logic [8]

• CWE subcategory: CWE-841 [5]

Description

At the core of the Feeder protocol, there is a FeedVault contract that allows the investor deposit funds
that will be redirected into various target vaults for investment. Upon the deposit, the investor will
get return the pool share tokens representing the yields from the overall investment. When examining
the pool share calculation, we notice the current approach can be better improved.

To elaborate, we show below the related deposit() routine. It implements a rather straightforward
logic in transferring the funds into the FeedVault. collecting necessary entry fees, and computing the
pool token shares. However, the current pool token share is calculated based on the difference from
before and after the rebalance. While we agree with the methodology, the actual implementation
in using depositedBalance() (lines 361 and 367) may not properly reflect the deserved share. The
actual balance difference can be better computed using depositedTokenBalance(false).

328 function deposit(uint256 _amount) public virtual isEnabled hasVaults nonReentrant {
329 // Transfer Token from Depositor to Vault
330 token.safeTransferFrom(address(msg.sender), address(this), _amount);

332 // Collect Entry Fees
333 uint256 _entryFees = _amount.mul(entryFeesBP).div (10000);
334 if (_entryFees > 0) {
335 if (autoSwapEntryFees) {
336 uint256 buyBackBefore = IERC20(entrySwapToken).balanceOf(address(this));
337 IERC20(token).safeIncreaseAllowance(swapRouterAddress , _entryFees);
338 IPancakeRouter02(swapRouterAddress).

swapExactTokensForTokensSupportingFeeOnTransferTokens(

11/27 PeckShield Audit Report #: 2021-180

Public

339 _entryFees ,
340 0,
341 entryFeesToTokenPath ,
342 address(this),
343 block.timestamp + 120
344);
345 uint256 buyBackAfter = IERC20(entrySwapToken).balanceOf(address(this));
346 uint256 buyBackAmount = buyBackAfter.sub(buyBackBefore);
347 IERC20(entrySwapToken).safeTransfer(entryFeesCollector , buyBackAmount);

349 emit FeesCollected(true , address(entryFeesCollector), address(
entrySwapToken), _entryFees);

350 } else {
351 IERC20(token).safeTransfer(entryFeesCollector , _entryFees);
352 }
353 }

355 // Collect Target Vaults Profit Shares
356 uint256 length = vaultInfo.length;
357 for (uint256 i = 0; i < length; i++) {
358 if (ITargetVault(vaultInfo[i]. targetVault).balanceOfToken () > 0)

ITargetVault(vaultInfo[i]. targetVault).collectFees ();
359 }

361 uint256 _beforeDepositBalance = depositedBalance ();

363 // Allocate to vaults in order to get new vaults balance
364 _allocate ();

366 // Get Pool Balance after deposited
367 uint256 _afterDepositBalance = depositedBalance ();

369 // Additional check for deflationary tokens
370 uint256 _balance = _afterDepositBalance.sub(_beforeDepositBalance);

372 if (_balance > 0) {
373 uint256 shares = 0;
374 uint256 totalSupply = totalSupply ();
375 if (totalSupply == 0) {
376 shares = _balance;
377 } else {
378 shares = (_balance.mul(totalSupply)).div(_beforeDepositBalance);
379 }
380 _mint(address(msg.sender), shares);
381 }

383 emit Deposited(address(msg.sender), _balance);
384 }

Listing 3.1: FeedVault::deposit()

Recommendation Properly compute the pool share for each deposit to reflect the fair contri-

12/27 PeckShield Audit Report #: 2021-180

Public

bution to the pool.

Status The issue has been fixed by this commit: 5db7d3.

3.2 Possible Sandwich/MEV Attacks For Reduced Returns

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: Multiple Contracts

• Category: Time and State [9]

• CWE subcategory: CWE-682 [4]

Description

As mentioned in Section 3.1, the Feeder protocol has designed a generic approach to invest VC funds,
harvest growing yields, and collect any gains, if any, to the share holders. In the meantime, we notice
the Feeder protocol takes a different approach by directly rewarding the yields back to investors.

To elaborate, we show below the harvest() function in TargetVaultPancake. This routine essentially
collects any pending rewards and then re-invests the collected rewards for additional gains, which
essentially redistributes the rewards evenly to current share holders.

185 /**
186 * @dev Harvest and compound token
187 */
188 function _harvest () internal virtual {
189 if (! isCakeStaking) {
190 pancakeStaking.deposit(pid , 0);
191 } else {
192 pancakeStaking.leaveStaking (0);
193 }
194
195 uint256 swapAmt = IERC20(rewardToken).balanceOf(address(this));
196 if (swapAmt > 0) {
197 if (! isCakeStaking) {
198 IERC20(rewardToken).safeIncreaseAllowance(swapRouterAddress , swapAmt);
199 IPancakeRouter02(swapRouterAddress).

swapExactTokensForTokensSupportingFeeOnTransferTokens(
200 swapAmt ,
201 0,
202 rewardTokenToTokenPath ,
203 address(this),
204 block.timestamp + 120
205);
206 }
207
208 _collectFees ();
209 _deposit ();

13/27 PeckShield Audit Report #: 2021-180

https://github.com/FeederFinance/vaults-contracts/commit/5db7d3

Public

210
211 emit Harvested(swapAmt);
212 }
213 }

Listing 3.2: TargetVaultPancake::_harvest()

We notice the collected rewards are evenly distributed to share holders. With that, it is possible
for a malicious actor to launch a flashloan-assisted deposit to claim the majority of rewards, resulting
in significantly less rewards to legitimate share holders. This is possible even though the harvest()

routine can only be invoked by the permitted harvester. Note a flashbot-assisted sandwich attack
can greatly facilitate this type of attacks.

Recommendation Develop an effective mitigation to the above sandwich attack to better
protect the interests of investors. It is suggested to apply necessary slippage control to ensure the
shareholders can still expected gains.

Status The issue has been fixed by the following commits: 676f105 and 647b33c.

3.3 Accommodation Of Possible Non-Compliant ERC20 Tokens

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [7]

• CWE subcategory: CWE-1126 [2]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the approve() routine and possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related
code snippet below. On its entry of approve(), there is a requirement, i.e., require(!((_value != 0)

&& (allowed[msg.sender][_spender] != 0))). This specific requirement essentially indicates the need
of reducing the allowance to 0 first (by calling approve(_spender, 0)) if it is not, and then calling a
second one to set the proper allowance. This requirement is in place to mitigate the known approve()/

transferFrom() race condition (https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729).

194 /**
195 * @dev Approve the passed address to spend the specified amount of tokens on behalf

of msg.sender.
196 * @param _spender The address which will spend the funds.

14/27 PeckShield Audit Report #: 2021-180

https://github.com/FeederFinance/vaults-contracts/commit/676f105
https://github.com/FeederFinance/vaults-contracts/commit/647b33c

Public

197 * @param _value The amount of tokens to be spent.
198 */
199 f unc t i on approve (address _spender , u in t _value) pub l i c on l yPay l o adS i z e (2 ∗ 32) {

201 // To change the approve amount you first have to reduce the addresses ‘
202 // allowance to zero by calling ‘approve(_spender , 0)‘ if it is not
203 // already 0 to mitigate the race condition described here:
204 // https :// github.com/ethereum/EIPs/issues /20# issuecomment -263524729
205 r equ i r e (! ((_value != 0) && (a l l owed [msg . sender] [_spender] != 0))) ;

207 a l l owed [msg . sender] [_spender] = _value ;
208 Approva l (msg . sender , _spender , _value) ;
209 }

Listing 3.3: USDT Token Contract

Because of that, a normal call to approve() with a currently non-zero allowance may fail. More-
over, it is important to note that for certain non-compliant ERC20 tokens (e.g., USDT), the transfer

() function does not have a return value. However, the IERC20 interface has defined the transfer()

interface with a bool return value. As a result, the call to transfer() may expect a return value.
With the lack of return value of USDT’s transfer(), the call will be unfortunately reverted.

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return
false without reverts. Moreover, the safe version also supports tokens that return no value (and
instead revert or throw on failure). Note that non-reverting calls are assumed to be successful.
To use this library you can add a using SafeERC20 for IERC20. Similarly, there is a safe version of
approve()/transferFrom() as well, i.e., safeApprove()/safeTransferFrom(). We highlight that this issue
is present in a number of contracts, including TargetVault, TargetVaultBunny, TargetVaultDopple.sol,
etc.

In the following, we use the TargetVault::retireTargetVault() routine as an example. This routine
is designed to retire a target vault and send all balances back to the feed vault. To accommodate
the specific idiosyncrasy, there is a need to replace transfer() (line 142) with safeTransfer().

137 /**
138 * @dev Retire target vault and send all balance back to vault
139 */
140 function retireTargetVault () public virtual onlyOwner {
141 uint256 balance = IERC20(token).balanceOf(address(this));
142 IERC20(token).transfer(feedVault , balance);

144 emit TargetVaultRetired ();
145 }

Listing 3.4: TargetVault::retireTargetVault()

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related

15/27 PeckShield Audit Report #: 2021-180

Public

approve()/transfer()/transferFrom().

Status The issue has been fixed by this commit: cd46570.

3.4 Proper Asset Rebalance For Disabled Target Vaults

• ID: PVE-004

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: FeedVault

• Category: Business Logic [8]

• CWE subcategory: CWE-841 [5]

Description

In Feeder, the FeedVault contract is an essential one with a number key risk parameters that can
be dynamically configured by privileged account, i.e., admin. While examining a specific privileged
function toggleTargetVault(), we realize the current handling logic needs to be improved.

To elaborate, we show below the related toggleTargetVault() routine. It implements a basic logic
in toggling the enable status of the given target vault. However, when a target vault is disabled,
the funds allocated to the target vault for investment needs to retrieved back for reallocation. Such
reallocation operation is not performed yet.

307 /**
308 * @dev Toggle enable status of target vault
309 */
310 f unc t i on t o gg l eTa r g e tVau l t (uint256 _vid , bool _status) pub l i c on l yRo l e (ADMIN_ROLE)

nonReent rant {
311 v a u l t I n f o [_vid] . enab l ed = _status ;
312 }

Listing 3.5: FeedVault :: toggleTargetVault ()

Recommendation Revise the above toggleTargetVault() routine so that the funds are properly
re-balanced for all active target vaults.

Status The issue has been fixed by this commit: cd46570.

16/27 PeckShield Audit Report #: 2021-180

https://github.com/FeederFinance/vaults-contracts/commit/cd46570
https://github.com/FeederFinance/vaults-contracts/commit/cd46570

Public

3.5 Improper withdraw() in TargetVaultDopple

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: TargetVaultDopple

• Category: Business Logic [8]

• CWE subcategory: CWE-841 [5]

Description

In the Feeder protocol, it supports a number of target vaults and each vault essentially acts as the
corresponding investment strategy. Each target vault inherits from the base contract TargetVault,
which defines the standard APIs, including deposit(), withdraw(), emergencyWithdrawAll(), harvest(),
and collectFees().

If we examine the withdraw() routine in the TargetVaultDopple contract, this routine allows for
withdrawing from the target vault to the central feed vault (line 150). It needs to be clarified that the
withdraw() expects the token amount argument, while the internal doppleStaking.withdraw() expects
a share amount. The interface mismatch may result in an inappropriate amount of tokens being
withdrawn.

131 /**
132 * @dev Withdraw from target vault to target vault
133 */
134 function withdraw(uint256 _amount) external virtual onlyVault {
135 if (_amount > 0) {
136 depositedBalance -= _amount;
137 doppleStaking.withdraw(address(this), pid , _amount);
138
139 uint256 _balance = dopLP.balanceOf(address(this));
140 // Redeem dopLP back to Token
141 uint256 _tokenBefore = token.balanceOf(address(this));
142 if (_balance > 0) {
143 dopLP.safeIncreaseAllowance(address(dopPool), _balance);
144 dopPool.removeLiquidityOneToken(_balance , getDoppleTokenIndex (), 0,

block.timestamp + 600);
145 }
146 uint256 _tokenAfter = token.balanceOf(address(this));
147 uint256 _tokenAmount = _tokenAfter.sub(_tokenBefore);
148
149 // Send token back to FeedVault
150 token.safeTransfer(feedVault , _tokenAmount);
151
152 if (depositedBalance == 0) {
153 cachedPricePerShare = 1e18;
154 } else {
155 cachedPricePerShare = targetPricePerShare ();

17/27 PeckShield Audit Report #: 2021-180

Public

156 }
157
158 emit Withdrawed(_amount);
159 }
160 }

Listing 3.6: TargetVaultDopple::withdraw()

Recommendation Be consistent in using the actual token amounts for withdrawal. The
above withdraw() routine needs to properly transform the token amount into the corresponding share
amount.

Status The issue has been fixed by this commit: abb3f9e.

3.6 Incorrect Fee Collection in
TargetVaultPancake::_collectFees()

• ID: PVE-006

• Severity: Medium

• Likelihood: High

• Impact: Low

• Target: TargetVaultPancake

• Category: Business Logic [8]

• CWE subcategory: CWE-841 [5]

Description

As mentioned in Section 3.5, the Feeder protocol supports a number of target vaults and each vault
essentially acts as the corresponding investment strategy. Each target vault needs to implements the
standard APIs, including deposit(), withdraw(), emergencyWithdrawAll(), harvest(), and collectFees

().
In the following, we examine the specific collectFees() API from the TargetVaultPancake contract.

This routine is designed to collect fees and invest the remaining funds back for additional gains.
However, it comes to our attention that the collected fee is denominated at the token for investment,
not the reward token. The current implementation incorrectly uses the reward token for fee collection
(line 148), which needs to be changed back to the target token.

1 function _collectFees () internal virtual {
2 uint256 _balance = IERC20(rewardToken).balanceOf(address(this));
3 uint256 _fees = _balance.mul(feesBP).div (10000);
4
5 if (_fees > 0) {
6 if (autoBuyBack) {
7 uint256 buyBackBefore = IERC20(buyBackToken).balanceOf(address(this));
8 token.safeIncreaseAllowance(swapRouterAddress , _fees);

18/27 PeckShield Audit Report #: 2021-180

https://github.com/FeederFinance/vaults-contracts/commit/abb3f9e

Public

9 IPancakeRouter02(swapRouterAddress).
swapExactTokensForTokensSupportingFeeOnTransferTokens(

10 _fees ,
11 0,
12 tokenToBuyBackPath ,
13 address(this),
14 block.timestamp + 120
15);
16 uint256 buyBackAfter = IERC20(buyBackToken).balanceOf(address(this));
17 uint256 buyBackAmount = buyBackAfter.sub(buyBackBefore);
18 IERC20(buyBackToken).safeTransfer(feesCollector , buyBackAmount);
19
20 emit FeesCollected(address(feesCollector), address(buyBackToken), _fees)

;
21 } else {
22 token.safeTransfer(feesCollector , _fees);
23
24 emit FeesCollected(address(feesCollector), address(token), _fees);
25 }
26 }
27
28 _deposit ();
29 }

Listing 3.7: TargetVaultPancake::_collectFees() firstnumber

Recommendation Revive the above _collectFees() routine to use the intended investment
token, instead of the reward token, for fee collection.

Status The issue has been fixed by this commit: abb3f9e.

3.7 Trust Issue of Admin Keys

• ID: PVE-007

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [6]

• CWE subcategory: CWE-287 [3]

Description

In the Feeder protocol, the privileged admin account plays a critical role in governing and regulating
the system-wide operations (e.g., vault/strategy addition and parameter setting). It also has the
privilege to control or govern the flow of assets for investment or full withdrawal among the three
components, i.e., FeedVault, and TargetVaults. Our analysis shows that the admin-related accounts

19/27 PeckShield Audit Report #: 2021-180

https://github.com/FeederFinance/vaults-contracts/commit/abb3f9e

Public

are indeed privileged. In the following, we show representative privileged operations in the Feeder

protocol.

299 /**
300 * @dev Update target vault
301 */
302 function setTargetVault(uint256 _vid , uint256 _allocPoint) public onlyRole(

MANAGER_ROLE) {
303 totalAllocPoint = totalAllocPoint.sub(vaultInfo[_vid]. allocPoint).add(

_allocPoint);
304 vaultInfo[_vid]. allocPoint = _allocPoint;
305 }

307 /**
308 * @dev Toggle enable status of target vault
309 */
310 function toggleTargetVault(uint256 _vid , bool _status) public onlyRole(ADMIN_ROLE)

nonReentrant {
311 vaultInfo[_vid]. enabled = _status;
312 }

314 /**
315 * @dev Update multiple target vaults alloc point
316 */
317 function setAllocPoints(uint256 [] memory _allocPoints) public onlyRole(MANAGER_ROLE)

nonReentrant {
318 require(_allocPoints.length == vaultInfo.length , "FeedVault(setAllocPoints):

number of vaults is incorrect");
319 uint256 length = vaultInfo.length;
320 for (uint256 i = 0; i < length; i++) {
321 setTargetVault(i, _allocPoints[i]);
322 }
323 }

Listing 3.8: Various Setters in FeedVault

We emphasize that the privilege assignment with various contracts is necessary and required for
proper protocol operations. However, it is worrisome if the admin account is not governed by a DAO-like
structure.

We point out that a compromised admin account would allow the attacker to add a malicious
vault or change other settings to steal funds in current protocol, which directly undermines the
assumption of the Feeder protocol.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been confirmed and partially mitigated with a multi-sig account to

20/27 PeckShield Audit Report #: 2021-180

Public

regulate the admin privileges.

3.8 Improved Emergency Withdrawal in TargetVaultBunny

• ID: PVE-008

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: Multiple Contracts

• Category: Business Logic [8]

• CWE subcategory: CWE-841 [5]

Description

As mentioned in Section 3.5, the Feeder protocol supports a number of target vaults and each target
vault needs to implements the standard APIs, including deposit(), withdraw(), emergencyWithdrawAll
(), harvest(), and collectFees(). In the following, we examine the emergencyWithdrawAll() routine
from the TargetVaultBunny contract.

As the name indicates, this routine is designed to withdraw all deposited balances back to the feed
vault. However, the current implementation in a number of target vaults does not properly return back
the funds back to the feed vault. Mover, this routine also needs to properly reset depositedBalance

back to 0. The affected target vaults include TargetVaultAutoFarm, TargetVaultACrypto, TargetVaultBunny
, and TargetVaultPancake.

144 /**
145 * @dev Withdraw all deposited balance back to target vault
146 */
147 function emergencyWithdrawAll () external virtual onlyOwner {
148 bunnyVault.withdrawAll ();
149
150 emit EmergencyWithdrawed ();
151 }

Listing 3.9: TargetVaultBunny::emergencyWithdrawAll()

Recommendation Revised the affected target vaults to properly return funds back to the feed
vault and reset depositedBalance back to 0.

Status The issue has been fixed by this commit: 38095f1.

21/27 PeckShield Audit Report #: 2021-180

https://github.com/FeederFinance/vaults-contracts/commit/38095f1

Public

3.9 Force Investment Risk in TargetVaultDopple

• ID: PVE-009

• Severity: High

• Likelihood: High

• Impact: High

• Target: TargetVaultDopple

• Category: Business Logic [8]

• CWE subcategory: CWE-841 [5]

Description

The Feeder protocol is a decentralized DeFi aggregator for diversified yield generation on Binance

Smart Chain (BSC). The investment subsystem is inspired from the yearn.finance framework and thus
shares similar architecture with vaults, and strategies.

While examining the TargetVaultDopple implementation, we notice a potential force investment
risk that has been exploited in earlier hacks, e.g., yDAI [13] and BT.Finance [1]. To elaborate, we
show blow the related TargetVaultDopple vault.

Specifically, new target vault contracts have been designed and implemented to invest VC assets,
harvest growing yields, and return any gains, if any, to the investors. In order to have a smooth
investment experience, the target vault contract has a dedicated function, i.e., deposit(), that can
be invoked to kick off the investment.

101 /**
102 * @dev Deposit from target vault to target vault
103 */
104 function deposit () external virtual onlyVault {
105 _deposit ();
106 cachedPricePerShare = targetPricePerShare ();
107 }
108
109 function _deposit () internal virtual {
110 uint256 _balance = token.balanceOf(address(this));
111
112 if (_balance > 0) {
113 uint256 _dopBefore = dopLP.balanceOf(address(this));
114
115 // Deposit to Belt to get Dopple
116 token.safeIncreaseAllowance(address(dopPool), _balance);
117 uint256 [] memory amounts = new uint256 [](dopPoolLength);
118 amounts[getDoppleTokenIndex ()] = _balance;
119 dopPool.addLiquidity(amounts , 0, block.timestamp + 600);
120 uint256 _dopAfter = dopLP.balanceOf(address(this));
121 _balance = _dopAfter.sub(_dopBefore);
122
123 depositedBalance += _balance;
124 dopLP.safeIncreaseAllowance(address(doppleStaking), _balance);
125 doppleStaking.deposit(address(this), pid , _balance);

22/27 PeckShield Audit Report #: 2021-180

Public

126
127 emit Deposited(_balance);
128 }
129 }

Listing 3.10: TargetVaultDopple::deposit()

It comes to our attention that the deposit() function is not guarded or can be invoked by any
one to initiate the investment. If the configured strategy blindly invests the deposited funds into
an imbalanced Dopple pool, the strategy will not result in a profitable investment. In fact, earlier
incidents (yDAI and BT hacks [13, 1]) have prompted the need of a guarded call to the investment
function. For the very same reason, we argue for the guarded call to block potential flashloan-assisted
attacks. One mitigation will enforce certain lockup period for investment.

Recommendation Develop the lockup time period to block unwanted flashloan attacks. And
take extra care in ensuring the vault assets will not be blindly deposited into a faulty target vault
(that is currently not making any profit).

Status The issue has been fixed by this commit: e9b7396.

3.10 Improper balanceOf() in
TargetVaultDopple/TargetVaultACrypto

• ID: PVE-010

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

In previous sections, we have examined a number of standard APIs, i.e., deposit(), withdraw(),
emergencyWithdrawAll(), harvest(), and collectFees(). Next, we examine another commonly-defined
function balanceOf(). Note that this function is used to return back the token balance that is being
invested in the target vault.

To elaborate, we show below the related balanceOf() routine from the TargetVaultDopple contract.
It implements a rather straightforward logic in computing the balance of target vault plus deposited
balance (line 232). It comes to our attention that availableBalance() returns token balance denom-
inated at the target token for investment, while vaultBalance() returns the share amount held in the
staking contract, i.e., doppleStaking. In other words, the share amount needs to properly transformed

23/27 PeckShield Audit Report #: 2021-180

https://github.com/FeederFinance/vaults-contracts/commit/e9b7396

Public

back to the amount of investment tokens. The same issue is also applicable to another target vault,
i.e., TargetVaultACrypto.

228 /**
229 * @dev Balance of target vault plus deposited balance
230 */
231 f unc t i on ba lanceOf () pub l i c view v i r t u a l r e tu rn s (uint256) {
232 re tu rn a v a i l a b l e B a l a n c e () . add (v au l tBa l a n c e ()) ;
233 }

Listing 3.11: TargetVaultDopple::balanceOf()

Recommendation Revised the above balanceOf() of affected target vaults to return the right
balance.

Status The issue has been fixed by this commit: abb3f9e.

24/27 PeckShield Audit Report #: 2021-180

https://github.com/FeederFinance/vaults-contracts/commit/abb3f9e

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Feeder protocol. The audited
system presents a unique addition to current DeFi offerings by offering a decentralized DeFi aggre-
gator for diversified yield generation on Binance Smart Chain (BSC). The current code base is clearly
organized and those identified issues are promptly confirmed and fixed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

25/27 PeckShield Audit Report #: 2021-180

Public

References

[1] BT Finance. BT.Finance Exploit Analysis Report. https://btfinance.medium.com/

bt-finance-exploit-analysis-report-a0843cb03b28.

[2] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[3] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[4] MITRE. CWE-682: Incorrect Calculation. https://cwe.mitre.org/data/definitions/682.html.

[5] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[6] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[7] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[8] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[9] MITRE. CWE CATEGORY: Error Conditions, Return Values, Status Codes. https://cwe.mitre.

org/data/definitions/389.html.

26/27 PeckShield Audit Report #: 2021-180

https://btfinance.medium.com/bt-finance-exploit-analysis-report-a0843cb03b28
https://btfinance.medium.com/bt-finance-exploit-analysis-report-a0843cb03b28
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/389.html

Public

[10] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[11] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[12] PeckShield. PeckShield Inc. https://www.peckshield.com.

[13] PeckShield. The yDAI Incident Analysis: Forced Investment. https://peckshield.medium.com/

the-ydai-incident-analysis-forced-investment-2b8ac6058eb5.

27/27 PeckShield Audit Report #: 2021-180

https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com
https://peckshield.medium.com/the-ydai-incident-analysis-forced-investment-2b8ac6058eb5
https://peckshield.medium.com/the-ydai-incident-analysis-forced-investment-2b8ac6058eb5

	Introduction
	About Feeder Finance
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Revisited Share Calculation in FeedVault::deposit()
	Possible Sandwich/MEV Attacks For Reduced Returns
	Accommodation Of Possible Non-Compliant ERC20 Tokens
	Proper Asset Rebalance For Disabled Target Vaults
	Improper withdraw() in TargetVaultDopple
	Incorrect Fee Collection in TargetVaultPancake::_collectFees()
	Trust Issue of Admin Keys
	Improved Emergency Withdrawal in TargetVaultBunny
	Force Investment Risk in TargetVaultDopple
	Improper balanceOf() in TargetVaultDopple/TargetVaultACrypto

	Conclusion
	References

